

## GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

| Semest                                                                                      | er: 7 <sup>th</sup>                                                                    |          |          |              |             |      |             |       |           |          |         |         |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------|----------|--------------|-------------|------|-------------|-------|-----------|----------|---------|---------|--|
| Paper code: AIML413P                                                                        |                                                                                        |          |          |              |             |      |             |       | L         | T/P      | Cre     | dits    |  |
| Subject                                                                                     | : Macl                                                                                 | hine Lea | arning i | n Healt      | hcare La    | ab   |             |       | 0         | 2        |         | 1       |  |
| Marking Scheme:                                                                             |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| 1. Teachers Continuous Evaluation: As per university examination norms from time to time    |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| 2. End term Examination: As per university examination norms from time to time              |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| INSTRUCTIONS TO EVALUATORS: Maximum Marks: As per university norms                          |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| 1. This is the practical component of the corresponding theory paper.                       |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| 2. The practical list shall be notified by the teacher in the first week of the class       |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| commencement under the intimation to the office of the HOD/ Institution in which they       |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| appear is being offered from the list of practicals below.                                  |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| 3. Instructors can add any other additional experiments over and above the mentioned in the |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| exp                                                                                         | experiment list which they think is important.                                         |          |          |              |             |      |             |       |           |          |         |         |  |
| 4. At least 8 experiments must be performed by the students.                                |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| Course Objectives:                                                                          |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| 1.                                                                                          | Gain hands-on experience in analyzing and modeling complex systems using network       |          |          |              |             |      |             |       |           |          |         |         |  |
|                                                                                             | analysis, time series analysis, and simulation techniques. Understand the challenges   |          |          |              |             |      |             |       |           |          |         |         |  |
|                                                                                             | and approaches for handling big data in complex systems and apply machine learning     |          |          |              |             |      |             |       |           |          | arning  |         |  |
|                                                                                             | algorithms for predictions and decision-making.                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| 2.                                                                                          | 2. Explore the application of data science techniques in interdisciplinary fields to a |          |          |              |             |      |             |       | ddress    |          |         |         |  |
| complex challenges in today's interconnected world.                                         |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| Course Outcomes:                                                                            |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| CO1                                                                                         | L Develop practical skills in data science techniques for analyzing complex systems an |          |          |              |             |      |             |       |           |          | ns and  |         |  |
|                                                                                             | understanding their behavior.                                                          |          |          |              |             |      |             |       |           |          |         |         |  |
| CO2                                                                                         | Apply data science methodologies to solve real-world problems in various domains,      |          |          |              |             |      |             |       |           |          |         |         |  |
|                                                                                             | such as social networks, finance, and healthcare, and gain insights into complex syste |          |          |              |             |      |             |       |           | system   |         |         |  |
|                                                                                             | dynamics.                                                                              |          |          |              |             |      |             |       |           |          |         |         |  |
| Course Outcomes (CO) to Programme Outcomes (PO) Mapping                                     |                                                                                        |          |          |              |             |      |             |       |           |          |         |         |  |
| <b>60</b> / <b>7 C</b>                                                                      | <b>DQQZ</b>                                                                            | DODE     | DODO     | <b>DGG C</b> | <b>DGG-</b> | DODO | <b>DGGT</b> | (Scal | le 1: Lov | v, 2: Me | dium, 3 | : High) |  |
| CO/PO                                                                                       | PO01                                                                                   | PO02     | PO03     | PO04         | PO05        | P006 | PO07        | 8004  | PO09      | PO10     | PO11    | PO12    |  |
| CO1                                                                                         | 2                                                                                      | 2        | 2        | 2            | 1           | -    | -           | -     | -         | -        | -       | 1       |  |
| CO2                                                                                         | 2                                                                                      | 2        | 2        | 2            | 1           | 1    | 1           | 1     | 1         | 1        | 1       | 2       |  |

## List of Experiments:

- 1. Data Preprocessing and Cleaning for Electronic Health Records (EHR) Data
- 2. Exploratory Data Analysis (EDA) on Medical Imaging Datasets
- 3. Building a Binary Classification Model for Disease Diagnosis
- 4. Implementing Multiclass Classification for Disease Severity Prediction
- 5. Applying Time Series Analysis for Patient Vital Sign Forecasting
- 6. Developing a Convolutional Neural Network (CNN) for Medical Image Classification
- 7. Building a Recurrent Neural Network (RNN) for Predicting Patient Readmission
- 8. Implementing Transfer Learning for Medical Image Feature Extraction



## GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

- 9. Evaluating Model Fairness and Bias in Healthcare Data
- 10. Applying Reinforcement Learning for Personalized Treatment Recommendations
- 11. Building an Explainable AI Model for Medical Diagnosis
- 12. Developing a Predictive Analytics System for Hospital Resource Management.